FEATURE ARTICLES

Empirical Software Engineering

As researchers investigate how software gets made,
a new empire for empirical research opens up

Greg Wilson and Jorge Aranda

Software engineering has long con-
sidered itself one of the hard sci-
ences. After all, what could be “hard-
er” than ones and zeroes? In reality,
though, the rigorous examination of
cause and effect that characterizes sci-
ence has been much less common in
this field than in supposedly soft dis-
ciplines like marketing, which long
ago traded in the gut-based gambles of
“Mad Men” for quantitative, analytic
approaches.

A growing number of researchers
believe software engineering is now
at a turning point comparable to the
dawn of evidence-based medicine,
when the health-care community be-
gan examining its practices and sort-
ing out which interventions actually
worked and which were just-so sto-
ries. This burgeoning field is known
as empirical software engineering and
as interest in it has exploded over the
past decade, it has begun to borrow
and adapt research techniques from
fields as diverse as anthropology, psy-
chology, industrial engineering and
data mining.

The stakes couldn’t be higher. The
software industry employs tens of
millions of people worldwide; even

Greg Wilson leads the Software Carpentry
project, which teaches basic software skills to
scientists and engineers. He received his Ph.D.
in computer science from the University of Ed-
inburgh. Jorge Aranda received his Ph.D. from
the University of Toronto and is currently a
post-doctoral fellow at the University of Victo-
ria. Their blog “It Will Never Work in Theory”
(http://meverworkintheory.org) is a survey of
recent results in empirical software engineer-
ing. E-mail addresses: guwilson@third-bit.com,
jarandag@gmail.com

466 American Scientist, Volume 99

small increases in their productivity
could be worth billions of dollars a
year. And with software landing our
planes, diagnosing our illnesses and
keeping track of the wealth of nations,
discovering how to make programs
more reliable is hardly an academic
question.

Where We Are

Broadly speaking, people who study
programming empirically come at the
problem from one of two angles. To
some, the phrase software engineering
has always had a false ring. In prac-
tice, very few programmers analyze
software mathematically the way that
“real” engineers analyze the strength
of bridges or the resonant frequency of
an electrical circuit. Instead, program-
ming is a skilled craft, more akin to
architecture, which makes the human
element an important (some would
say the important) focus of study.
Hollywood may think that program-
mers are all solitary 20-something
males hacking in their parents” base-
ment in the wee hours of the morn-
ing, but most real programmers work
in groups subject to distinctly human
patterns of behavior and interaction.
Those patterns can and should be
examined using the empirical, often
qualitative tools developed by the so-
cial and psychological sciences.

The other camp typically focuses
on the “what” rather than the “who.”
Along with programs themselves,
programmers produce a wealth of
other digital artifacts: bug reports,
email messages, design sketches and
so on. Employing the same kinds of
data-mining techniques that Ama-
zon uses to recommend books and

that astronomers use to find clusters
of galaxies, software engineering re-
searchers inspect these artifacts for
patterns. Does the number of changes
made to a program correlate with the
number of bugs found in it? Does hav-
ing more people work on a program
make it better (because more people
have a chance to spot problems) or
worse (because of communication
stumbles)? One sign of how quickly
these approaches are maturing is the
number of data repositories that have
sprung up, including the University
of Nebraska’s Software Artifact Infra-
structure Repository, the archives of
NASA'’s highly influential Software
Engineering Laboratory and the Na-
tional Science Foundation-funded Ce-
BASE, which organizes project data
and lessons learned. All are designed
to facilitate data sharing, amplifying
the power of individual researchers.
The questions we and our col-
leagues seek to answer are as wide-
ranging as those an anthropologist
might ask during first contact with a
previously unknown culture. How do
people learn to program? Can the fu-
ture success of a programmer be pre-
dicted by personality tests? Does the
choice of programming language af-

Figure 1. Making software is a signature activ-
ity of our era that has produced a canon of
beliefs and practices, yet only recently have
the tools of social science and empirical in-
vestigation been systematically applied on
a large scale to the software enterprise. Em-
pirical software engineering is the emerging
discipline of acquiring a rigorous, evidence-
based understanding of what we know about
making software, what we don’t know and
what we can learn about it using the tools of
empirical research.

a. original source code

X
(T

return hval;

3 2

©
o0&
| 8

C. Halstead's software science metric adds numerous dimensions

length 97
volume 526
level 0.036

number of mental discriminations 14,490

Figure 2. There are many reasons to measure the complexity of computer code. The simplest
metric of complexity for the snippet of code in (a) above, written in the C language, is the
number of lines. Next simplest is often the number of C functions; in the sample code here,
one. At a higher level, McCabe’s cyclomatic complexity allows us to calculate the number of
independent paths in the code and render them in a control-flow graph (b). Halstead’s soft-
ware science metric analyzes complexity based on number and redundant use of textual ele-
ments, without reference to program structure. Herraiz and Hassan tested whether any of the
higher measures provided more diagnostic information about complexity than the simplest

measure, lines of code. (Figure adapted from material in Herraiz, 1., and A. E. Hassan. 2011.
Beyond lines of code: Do we need more complexity metrics? In Making Software: What Really
Works and Why We Believe It. Sebastopol, CA: O’'Reilly Media, 125-144.)

468 American Scientist, Volume 99

fect productivity? Can the quality of
code be measured? Can data mining
predict the location of software bugs?
Is it more effective to design code in
detail up front or to evolve a design
week by week in response to the accre-
tion of earlier code? Convincing data
about all of these questions are now
in hand, and we are learning how to
tackle many others.

Along the way, our field is grap-
pling with the fundamental issues that
define any new science. How do we
determine the validity of data? When
can conclusions from one context—
one programming team, or one vast
project, like the development of the
Windows Vista operating system—
be applied elsewhere? And crucially,
which techniques are most appropri-
ate for answering different kinds of
questions?

Some of the most exciting discoveries
are described in a recent book called
Making Software: What Really Works, and
Why We Believe It, edited by Andy Oram
and Greg Wilson (O'Reilly Media, 2011),
in which more than 40 researchers pres-
ent the key results of their work and the
work of others. We'll visit some of that
research to give an overview of prog-
ress in this field and to demonstrate the
ways in which it is unique terrain for
empirical investigation.

Quality by the Numbers
A good example of the harvest that
empirical studies are generating relates
to one of the holy grails of software en-
gineering: the ability to measure the
quality of a program, not by running
it and looking for errors, but by auto-
mated examination of the source code
itself. Any technique that could read
a program and predict how reliable
it would be before it is delivered to
customers would save vast sums of
money, and probably lives as well.
One consistent discovery is that, in
general, the more lines of code there
are in a program, the more defects it
probably has. This result may seem
obvious, even trivial, but it is a starting
point for pursuing deeper questions of
code quality. Not all lines of code are
equal: One line might add 2 + 2 while
another integrates a polynomial in sev-
eral variables and a third checks to see
whether several conditions are true
before ringing an alarm. Intuitively,
programmers believe that some kinds
of code are more complex than others,
and that the more complex a piece of

code is, the more likely it is to be bug-
gy. Can we devise some way to mea-
sure this complexity? And if so, can
the location of complexity hot spots
predict where defects will be found?

One of the first attempts to answer
this question was developed by Thom-
as J. McCabe and is known as cyclomat-
ic complexity. McCabe realized that any
program can be represented as a graph
whose arcs show the possible execu-
tion paths through the code. The sim-
plest graph is a straight chain, which
represents a series of statements with
no conditions or loops. Each if state-
ment creates a parallel path through
the graph; two such statements create
four possible paths. Figure 2 shows a
snippet of code extracted from a cross-
platform download manager called
Uget. The graph in part (b) shows the
paths through the code; each if and
loop adds one unit of complexity, giv-
ing this code an overall complexity
score of 3.

Another widely used complexity
measure is Maurice Halstead’s soft-
ware science metric, which he first
described in 1977. Instead of graph
theory, it draws on information theory
and is based on four easily measured
features of code that depend on the
number of distinct operators and oper-
ands, their total count, how easy they
are to discriminate from one another
and so on. Figure 2(c) shows the values
for the sample piece of code in (a).

Hundreds of other metrics have
been developed, published and ana-
lyzed over the past 30 years. In their
chapter, Herraiz and Hassan use sta-
tistical techniques to explore a simple
question: Are any of these metrics ac-
tually better at predicting errors than
simply counting the number lines of
source code? Put another way, if a
complexity metric is highly correlat-
ed with the number of lines of source
code, does it actually provide any in-
formation that the simpler measure
does not?

For a case study, Herraiz and Has-
san chose to examine the open-source
Arch Linux operating system distri-
bution, which yielded a sample of
338,831 unique source files in the C
language. They calculated the mea-
sures discussed above, and several
others, for each of these files, taking
special account of header files (those
consisting mainly of declarations that
assist in code organization). They
found that for nonheader files, where

www.americanscientist.org

Figure 3. To the uninitiated, pair programming seems an out-there technique. Two program-
mers work at the same machine, usually with one piloting the keyboard, the other flying in
the rear seat of the cockpit. Many innovators in software practices laud pair programming,.
Whether it should be preferred can be and has been investigated rigorously via a wide range
of experiments that test different personality matches, different protocols for determining to
whom control of the keyboard is assigned and different types of problems.

programs actually do their work,
all the metrics tested showed a very
high degree of correlation with lines
of code. Checking for generalizability,
the effect held for all but very small
files. The authors drew a clear lesson:
“Syntactic complexity metrics cannot
capture the whole picture of software
complexity.” Whether based on pro-
gram structure or textual p10pert1es,
the metrics do not provide more in-
formation than simply “weighing” the
code by counting the number of lines.

Like all negative results, this one is a
bit disappointing. However, that does
not mean these metrics are useless—
for example, McCabe’s scheme tells
testers how many different execution
paths their tests need to cover. Above
all, the value here is in the progress of
the science itself. The next time some-
one puts forward a new idea for mea-
suring complexity, a validated, empiri-
cal test of its effectiveness will be there
waiting for them.

Two-Headed Approach

Metrics research looks at the code that
programmers produce, but at least as
much research effort has focused on
how they produce it. An interesting case
is pair programming, a work style that

burst onto the scene in the late 1990s
(though people have been using it in-
formally for as long as programming
has existed). In pair programming, two
programmers sit at a single worksta-
tion and create code together. The driv-
er handles the keyboard and mouse,
while the navigator watches, comments
and offers corrections. Many program-
mers have noticed over the years that
duos like this seem to produce code
more quickly and with fewer bugs. If
asked, they would probably say that
the benefits arise because different
people naturally notice different sorts
of things, or because not having to type
gives the navigator more time to think,
or possibly that having an audience
makes the driver think more carefully.
But is pair programming actually bet-
ter, and if so, which of the possible ex-
planations is the reason?

The first empirical study of pair
programming, by Tcmple Univ ersity
professor John Nosek in 1998, stud-
ied 15 programmers, 5 working alone
(the control group), the other 10 in 5
pairs. A challenging programming
problem was given, with a time limit
of 45 minutes. The results were statisti-
cally significant. Solutions produced
by the pairs took 60 percent more to-
469

2011 November-December

Figure 4. Measuring programmer aptitude and skill is the difficult art of devising a number
line from “zero” to “great.”

tal time, but dividing the total time
by two, they completed the tasks 20
percent faster. And the author of the
study reported that the pairs produced
higher-quality code.

Subsequent studies with larger
groups over longer periods of time,
summarized by Laurie Williams at
North Carolina State University, have
expanded on these early results. Pair
programmers tend to produce code
that is easier to understand, and they
do so with higher morale. Their pro-
ductivity may fall initially as the pro-
grammers adjust to the new work
style, but productivity recovers and
often surpasses its initial level as pro-
grammer teams acquire experience.
Related studies have also given insight
into what actually happens during pair
programming. For example, successful
pairs often don’t work together for a
full day—pairing can be mentally ex-
hausting. Changing partners regularly
seems to help, and swapping roles pe-
riodically between driver and naviga-
tor helps keep programmers engaged.

470 American Scientist, Volume 99

These results can even influence
hardware design. Some teams have
two people who both do best when
they have control of the keyboard.
Why not provide dual keyboards and
mice? Jan Chong and Tom Hurlbutt
tested this approach at Stanford Uni-
versity in 2007 and found it a worth-
while advance in pair programming,
a finding subsequently supported by
additional studies by Andreas Hofer at
the University of Karlsruhe and by Sal-
lyann Freudenberg, a software coach.
Once again, what we're seeing is the
science rapidly improving as early
studies generate questions and meth-
ods for follow-on research.

What we also see is that being right
isn’t always enough to effect change.
Despite the accumulation of evidence
in its favor, pair programming is still
very much the exception in industry.
Managers and programmers alike of-
ten brush the data away;, clinging to the
idea that putting two people on one
job must double staffing requirements
and therefore cannot deliver efficiency.

This is an unfortunate phenomenon in
many fields. Some people resist change
tenaciously, even in the face of evi-
dence and at the risk of failure.

Getting Good Programmers

Another holy grail of empirical soft-
ware engineering research is finding
a way to tell good programmers from
bad. A widely quoted piece of folk-
lore says that good programmers are
28 times better than average (or 40, or
100, or some other large number). As
teacher and developer Steve McCon-
nell discusses in Making Software, the
precise quantification of this assertion
may be suspect, given that the defini-
tion of “better” is elusive in any knowl-
edge-based work. Yet everyone who
has programmed for a living knows
that there really are huge differences
in productivity and capability among
programmers. Other than hiring some-
one and watching her work for a cou-
ple of years, how can we spot the stars?

Jo Erskine Hannay at Simula Re-
search Laboratory has addressed the
issues of talent and expertise by break-
ing the question into parts: Can we
actually define what it means to be
a good software developer? Can we
reliably determine that one developer
is better than another? And if we can’t,
should we surrender on those ques-
tions and focus instead on tools and
techniques?

Hannay zeroes in on a field called
individual differences research, in which
individuals are classified by character-
istics that separate one from another,
such as personality. Although some
pseudoscientific schemes used by hu-
man resources departments and dat-
ing websites have given personality
testing a bad reputation, modern pro-
grams such as the five-factor model
have solid scientific foundations (or
as scientists might put it, we have con-
struct validity for the concept of mea-
suring personality). The five-factor
model and similar protocols address
dimensions that include extraversion,
agreeableness, conscientiousness,
emotional stability, and willingness
and ability to learn from experience.
We also know that programmers tend
to have certain personality types and
that they vary less in personality than
the average population. Can we use
findings like these to discover good
programmers?

The short answer is no. Large meta-
analyses and further studies by Han-

please have Your
body of knowledge ready
for inspection

careeyr

L

Figure 5. Two grails of software research are the ability to compare programmers and determine which is “better,” and the ability to algorithmi-
cally analyze code to determine its quality. The basic goal of both is better software. One route to better software could be credentialing and
licensure of software engineers like that imposed on civil and other engineers. Mastery of a body of knowledge would be the gateway, but at
present that would be establishing a required body of knowledge before demonstrating empirically that it is the right body of knowledge.

nay and others conclude that a pro-
grammer’s personality is not a strong
predictor of performance. The people
who swear by their beliefs about per-
sonality and programmer success have
now been given reason to assess their
position critically, along with method-
ological support for doing so.

Credible Accreditation

If we can’t predict who will become a
good programmer, can we at least cer-
tify who already is one? Would it help
if software developers were required to
undergo some sort of certification? In
most of the industrialized world, engi-
neering professionals must be licensed;
a preliminary exam permits them to

practice and gain experience as an en-,

gineer-in-training, followed some years
later by a deeper exam, often special-
ized according to their discipline. Suc-
cessful candidates are then allowed to
offer their services to the public. Could
such a program be developed for soft-
ware engineers? And would it actually
make anything better?

If done right, such a program would
be based on a codified body of neces-
sary knowledge and best practices, just
as exams in civil, mechanical, and elec-

www.americanscientist.org

trical engineering are. A major effort
under way right now is the Software
Engineering Body of Knowledge proj-
ect (SWEBOK), sponsored by the IEEE
Computer Society. Their intentions are
noble, and conscientious professionals
are steadily assembling a potential set
of standards.

We are skeptical of this work, for
the very reasons that we are commit-
ted to empirical software engineering
research. We believe that it puts the
cart before the horse, that we simply
don’t yet know enough about what
actually works and what doesn’t to
define such standards. In place of a
trustworthy gateway, we fear that a
Software Engineering Body of Strong
Opinion would create a false belief
that we know more than we do at
present about how software can and
should be made, how the quality of
software can be rigorously determined
and how programmers should take on
the job of programming. That knowl-
edge is the very thing empirical soft-
ware researchers are stalking.

For example, in the 1990s a group
of respected software designers com-
bined forces to create a graphical nota-
tion for computer programs called the

Unified Modeling Language (UML),
which was intended to fill the role of
blueprints and circuit diagrams in civil
and electrical engineering. Despite a
great deal of hype, UML never real-
ly caught on: Almost everyone who
earns a degree in computer science
learns about UML at some point, but
very few programmers use it volun-
tarily (although some are obliged to
use it in order to satisfy the terms of
government procurement contracts).
In 2007, Mario Cherubini, Gina
Venolia, Rob DeLine and Andrew
Ko studied what kinds of diagrams
programmers actually draw and why
they draw them. They found that in al-
most all cases, programmers’ sketches
were transient in nature; they were
meant to be aids to conversation
rather than archival documentation.
They also found that the cost of turn-
ing hastily drawn whiteboard doodles
into formal instructions was greater
than the value of the diagrams to
the programmers who were creating
them. Companies selling UML draw-
ing tools ignore this awkward result,
but we are hopeful that a younger
generation of software designers will
incorporate into their work both find-

2011 November-December 471

=

I

«

)

|

Figure 6. Like the rest of social science research, empirical software engineering faces challenges in establishing that results are generalizable.
Do findings scale from small shops to large, from small projects to large, from industrial, tightly managed settings to the milieu dubbed the

open-source bazaar by Eric Raymond?

ings like these and the research meth-
ods behind them.

Life Imitates Code

In 1967, only partly as a wry joke, Mel-
vin Conway coined his eponymous
law:

Any organization that designs a
system...will produce a design
whose structure is a copy of the
organization’s communications
structure.
In other words, if the people writing a
program are divided into four teams,
the program they create will have four
major parts.

472 American Scientist, Volume 99

Nachi Nagappan, Christian Bird
and others at Microsoft Research eval-
uated the validity of Conway’s law by
examining data collected during the
construction of Windows Vista. Vista
consists of thousands of interrelated
libraries and programs called binaries.
When an error occurs, the breakdown
can usually be traced to a fault in a
single binary or to a breakdown in the
interaction between binaries. Nagap-
pan, Bird, and their team used data
mining to explore which aspects of
software construction correlated with
faults. They found that when work
occurred in alignment with Con-
way’s law—that is, when the structure

of the team and the structure of the
code mirrored each other—code con-
tained fewer bugs, whereas work that
crossed team boundaries increased
failure-proneness.

Nagappan and his collaborators
then used their data to predict failure-
proneness by locating code produced
by multiple groups or at the interface
of multiple groups. Contrary to digi-
tal folklore, they found that geographic
separation between team members
didn’t have a strong impact on the
quality of their work. What did mat-
ter was organizational separation: The
farther apart team members were in the
company organization chart, the great-

er the number of faults in the software
they produced. This result is applied
science at its best: It is both surprising
and actionable.

Open Access

At present, a tremendous enabler of
empirical software engineering re-
search is the open-source software
movement, which is rapidly generat-
ing a freely available accumulation
of code along with complete archives
of the communications between de-
velopers. In an open-source setting,
programmers collect around software
projects to produce applications that
they want to see available for free. The
developers are often in different places
and time zones, so communication oc-
curs via email and online forums. The
code and communication records are
accessible to all via websites, so inter-
ested developers can join the project at
any stage to share expertise, trouble-
shoot and add to the source code.

These electronic repositories are a
software-engineering researcher’s
paradise. They constitute a historical
record of the life of a project, includ-
ing all of the dead ends and debates,
the task assignments, the development
of team structure and many other ar-
tifacts. With thoughtful and targeted
searches, researchers can explore top-
ics such as how newcomers adapt
to a software project’s culture. They
can test prediction engines to assess
the validity of theories about project
structure and code development. Bug-
tracking records and the interpersonal
interactions involved in solving soft-
ware flaws serve as a narrative of the
incremental improvement of code
quality. Before the open-source com-
munity took on its present form, this
kind of access to project archives was
available only to investigators in cor-
porate research units.

As the open-source movement de-
veloped, there was a feeling that re-
searchers should treat it as a special
case in the realm of software engineer-
ing. Eric Raymond, president of the
Open Source Initiative, highlighted the
differences between open-source and
industrial projects when he compared
them to a bazaar and a cathedral. In-
dustry is the cathedral, in which proj-
ects are built according to carefully de-
tailed plans, with attendant hierarchy,
role divisions, order and dogma. The
bazaar is bustling, free-form, organic
and shaped by the aggregate actions

www.americanscientist.org

of the crowd. Researchers bringing
results from the open-source world
met skepticism about whether their
findings could be generalized to the
rest of the community. In fact, research
has demonstrated that the distinc-
tions between the two worlds are of-
ten illusory. There are cathedrals in
the open-source sphere and bazaars
in the closed-source. Similar social and
technical trends can be documented in
both, and researchers have come to ap-
preciate the dividends that come from
comparing the two.

The work of Guido Schryen at the
University of Freiberg and Eliot Rich at
the University at Albany, SUNY, is in-
structive about how to ask and answer
questions about the two worlds. In a
2010 paper they addressed a much-
debated and critically important issue:
Which model leads to better security,
open- or closed-source software? Se-
curity is a formidable concern for any
software that will come within reach of
networks. Schryen and Rich examined
the security-vulnerability announce-
ments and the release (or nonrelease)
of patches (software fixes) for 17 wide-
ly deployed software packages. Pro-
ponents of open-source software have
argued that its characteristically wide
developer base must lead to better re-
view and response to security issues.
An opposing argument holds that
closed-source and industrial projects
have more direct motivation to find
and fix security flaws. Schryen and
Rich sorted the packages they studied
within categories such as open- and
closed-source, application type (oper-
ating system, web server, web browser
and so on), and structured or loose or-
ganization. They found that security
vulnerabilities were equally severe for
both open- and closed-source systems,
and they further found that patching
behavior did not align with an open—
versus-closed source divide. In fact,
they were able to show that applica-
tion type is a much better determinant
of vulnerability and response to securi-
ty issues, and that patching behavior is
directed by organizational policy with-
out any correlation to the organiza-
tional structure that produced the soft-
ware. Whether open- or closed-source
software was more secure turned out
to be the wrong question to ask. We
do not expect that the lines between
the open- and closed-source worlds
will be so blurred in every aspect of
software engineering, but results like

these show how the massive amount
of information available as a byprod-
uct of open-source development can
be put to scientific use.

As in any applied science, the ulti-
mate measure of success for all of this
work will be change—change in the
tools used to develop software, change
from current practices to those that are
provably better and most importantly,
change in what is and is not accepted
as proof.

Bibliography

Bird, C., D. Pattison, R. D’Souza, V. Filkov and
P. Devanbu. 2008. Latent social structure in
open-source projects. SIGSOFT ‘08 /FSE-16:
Proceedings of the 16" ACM SIGSOFT Sym-
posium on Foundation of Software Engineer-
ing:24-35.

Chong, J., and T. Hurlbutt. 2007. The social
dynamics of pair programming. Proceedings
of the 29" International Conference on Software
Engineering:354-363.

Freudenberg, S., P. Romero and B. du Boulay.
2007. Talking the talk: Is intermediate-level
conversation the key to the pair program-
ming success story? Proceedings of AGILE
2007:84-91. ;

Glass, Robert. L. 2002. Facts and Fallacies of Soft-
ware Engineering. Boston: Addison-Wesley.

Halstead, M. 1977. Elements of Software Science.
North Holland: Elsevier Science Ltd.

Hannay, . E., E. Arisholm, H. Engvik and D. L.
K. Sjeberg. 2010. Personality and pair pro-
gramming. IEEE Transactions on Software
Engineering 36:61-80.

Hofer, A. 2008. Video analysis of pair pro-
gramming. Proceedings of the 2008 Interna-
tional Workshop on Scrutinizing Agile Prac-
tices:37-41.

Nagappan, N., B. Murphy and V. Basili. 2008.
The influence of organizational structure on
software quality: an empirical case study.
Proceedings of the 30™ International Conference
on Software Engineering:521-530.

Nosek, J. T. 1998. The case for collaborative
programming. Communications of the ACM
41:105-108.

Oram, A., and G. Wilson. 2011. Making Soft-
ware: What Really Works and Why We Believe
It. Sebastopol, CA: O'Reilly Media.

Schryen, G., and E. Rich. 2010. Increasing
software security through open source or
closed source development? Empirics sug-
gest that we have asked the wrong ques-
tion. Proceedings of the 43rd Hawaii Interna-
tional Conference on System Sciences:1-10.

For relevant Web links, consult this
issue of American Scientist Online:

2011 November-December 473

Copyright of American Scientist is the property of Sigma X| Science Research Society and its content may not
be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

www.manharaa.com

